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Abstract. We algebraically construct the Fock space of the Sutherland model in terms of the
eigenstates of the pseudomomenta as basis vectors. For this purpose, we derive the raising and
lowering operators which increase and decrease eigenvalues of pseudomomenta. The operators
exchanging eigenvalues of two pseudomomenta have been known. All the eigenstates are
systematically produced by starting from the ground state and multiplying these operators by it.

The Sutherland model is a solvable quantum many-body system with inverse-square
interaction on a circumference [1]. The ground-state wavefunction is of the Jastrow type and
excited states are polynomials multiplied by the ground state. Among the polynomials, the
symmetric ones are Jack polynomials [2–4], while the others are called nonsymmetric Jack
polynomials. These energy eigenstates can be taken as eigenstates of the pseudomomenta
[5, 6], which commute with each other and with the Hamiltonian.

For its rich content, the Sutherland model has been zealously investigated at various
standpoints. For example, the Sutherland model is regarded as a model which describes the
edge state in the fractional quantum Hall effect [7]. It may describe the fractional statistics
of quasiparticles [8]. Also a deep connection of this model to the conformal field theory is
found [9]. Haldane argued that the Sutherland model is equivalent to the system of particles
obeying the exclusion statistics if the coupling constant is a rational number [10]. Based
on this assumption he obtained the concrete form of the two-point correlation function;
i.e. as intermediate states, he only used free particle states obeying the exclusion statistics.
The result coincides with the exact one which was calculated by using the duality of Jack
polynomials [11–14]. The duality means the invariance of the Jack polynomials under a
nonlinear transformation with the replacement of the coupling constant by its inverse. In the
Sutherland model, many interesting properties such as the exclusion statistics are deduced
by directly inspecting the Jack polynomials.

To deeply understand the Sutherland model, we need to reformulate algebraically the
eigenvalue problem of this model. We mention its importance by recalling the case of a
harmonic oscillator. Although this problem is solved in terms of Hermite polynomials, the
algebraic approach using creation and annihilation operators revealed the essence of the
model. The quantum field theory is formulated on the basis of harmonic oscillators. In
the Calogero model, with inverse-square interaction and harmonic potential, creation and
annihilation operators are examined [15, 16]. In the Sutherland model, a hopeful algebraic
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approach means that a simple and transparent algebra determines all the energy levels and
their degeneracy. There are some algebraic treatments for symmetric [17] and nonsymmetric
Jack polinomials [18, 19], where a polynomial generates another one by some operations.
However such a generated state is not an eigenstate of the pseudomomenta except for special
cases and is not simple for the present purpose to seek a physical transparency.

In this letter, we propose a novel algebraic formalism for the eigenvalue problem in
the Sutherland model. The formalism is based on operators which increase, decrease and
exchange the eigenvalues of psudemomenta. The raising and lowering operators are derived
in this letter and the operator for exchange has been introduced [19]. Starting from the
ground state, we can reach an arbitrary eigenstate of the pseudomomenta by multiplying a
finite number of operators. The Fock space of the Sutherland model is reproduced in terms
of eigenstates of the pseudomomenta.

We considerN particles on a circumference with lengthπ and denote the coordinate
of the ith particle byθi . For these particles we introduce an operatorKij (i 6= j ) which
exchanges coordinatesθi and θj , i.e. Kij θi = θjKij . Then an extended version of the
Sutherland model is given by the Hamiltonian

H = −
N∑
i=1

∂2

∂θ2
i

+ 1

2

∑
i 6=j

β(β −Kij )
sin2[(θi − θj )/2]

(1)

whereβ is the coupling constant. This Hamiltonian is invariant against the exchange of
the coordinates of particles and satisfies the commutation relation [H,Kij ] = 0. To make
the description simple, we use the complex coordinatezi = exp(iθi) instead ofθi . The
momentum is accordingly represented as

pi = zi ∂
∂zi

. (2)

The quantization condition is then given by

[pi, zj ] = δij zi . (3)

The Hamiltonian (1) is rewritten as

H =
N∑
i=1

p2
i +

∑
i,j

zizj

(zi − zj )2β(β −Kij ). (4)

Dunkl [5] and Cherednik [6] introduced the pseudomomentum which is defined as

Di = pi + β
∑
j (>i)

zi

zi − zj Kij − β
∑
j (<i)

Kij
zi

zi − zj . (5)

In terms of{Di}, the Hamiltonian and the total momentum are written as

H =
N∑
i=1

D2
i P =

N∑
i=1

Di. (6)

The pseudomomenta are Hermitian (D
†
i = Di) and commute with each other:

[Di,Dj ] = 0. (7)

Hence they also commute with the Hamiltonian ([H,Di ] = 0). The exchange operators
affect the pseudomomenta through the relations

DiKi,i+1−Ki,i+1Di+1 = β, (8)

[Dj,Ki,i+1] = 0 (j 6= i, i + 1). (9)
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The quantization condition (3) is represented as

[Di, zj ] =

zi + βzi

∑
j (<i)

Kij + β
∑
j (>i)

Kij zi (i = j)

−β{zjKij θ(i − j)+Kijzj θ(j − i)} (i 6= j).
(10)

Here the step functionθ(x) is 1 for x > 0 and 0 otherwise. While the Hamiltonian (6)
is of the form for free particles with momenta{Di}, the quantization condition (10) is
rather complicated. That is, all the effects of the long-range interaction are involved in
the quantization condition (10). For this reason the interaction in the Hamiltonian (1) is
called a statistical interaction. The operators{Di, zj ,Kkl} are closed with respect to their
mutual products, and thereby forming an algebra. However it is not a Lie algebra, since
the commutator of some operators is no longer represented by a linear combination of the
operators. Relations (7)–(10) form a degenerate double-affine Hecke algebra. The same
structure for the Calogero model was examined by Ujino and Wadati [15] and Kakei [16].

We construct the energy eigenvalues and the eigenstates of the Sutherland model in a
completely algebraic manner. First, we examine the operatorXi,i+1 defined by

Xi,i+1 = i[Di,Ki,i+1] (i = 1, . . . , N − 1) (11)

which is clearly Hermitian (X†i,i+1 = Xi,i+1). We call this thebraid-exclusion operator.
The q-deformed version of this operator was first introduced by Killirov and Noumi [19].
Relations (8) and (9) forDi andKi,i+1 are converted to the following relations:

DiXi,i+1 = Xi,i+1Di+1 (12)

Di+1Xi,i+1 = Xi,i+1Di (13)

[Dk,Xi,i+1] = 0 (k 6= i, i + 1). (14)

These equations mean thatXi,i+1 exchanges the pseudomomentaDi andDi+1.
From definition (11) the square ofXi,i+1 is written as

X2
i,i+1 = (Di −Di+1)

2− β2. (15)

The positive semidefiniteness ofX2
i,i+1 requires that the difference of eigenvalues ofDi

andDi+1 must differ by a number larger than or equal to|β|. As will be clear by later
examination, any eigenvalues of the pseudomomenta are integers in both the special cases of
|β| = 0 and 1. For|β| = 0, the particles are bosonic since (15) shows that their eigenvalues
can take the same value. On the other hand, for|β| = 1, the particles are fermionic since
the eigenvalues must take different integers due to (15). Thus, relation (15) for 0< |β| < 1
shows neither bosonic nor fermionic statistics but suggests Haldane’s exclusion statistics
[20, 21].

The braid-exclusion operators satisfy the following relations:

Xi,i+1Xi+1,i+2Xi,i+1 = Xi+1,i+2Xi,i+1Xi+1,i+2 (16)

Xi,i+1Xj,j+1 = Xj,j+1Xi,i+1 (|i − j | > 2) (17)

which are derived from definition (11) and relations (7)–(9) by straightforward calculation.
Equations (16) and (17) are the very relations which generators of a braid group satisfy
[22]; equation (16) is also of the same form as the Yang–Baxter relation. They essentially
determine the characters of operators which will be introduced below. Thus the exchange
operatorXi,i+1 for the pseudomomenta possesses both the characters of the exclusion
statistics and the braid group structure. This is the reason why we have called them
braid-exclusion operators. The operator, however, has no inverse operator against any
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true generators for a braid group. In fact the exclusion character (15) allows the eigenvalue
of Xi,i+1 to vanish when the eigenvalue ofDi differs from that ofDi+1 by ±β.

Next we recall an operatore† which is defined as

e† = KN,N−1KN−1,N−2 . . . K32K21z1 (18)

and call it thedisplacement operator. It was introduced by Knop and Sahi [18] in relation
to nonsymmetric Jack polynomials. The equation|zi | = 1 guarantees its unitarity:

e†e = ee† = 1. (19)

Equations (7)–(10) show that the operatore† satisfy the relations

Dje
† − e†Dj+1 = 0 (j = 1, . . . , N − 1) (20)

DNe
† − e†D1 = e†. (21)

That is,e† displaces all the subscripts ofDi by one periodically. Equations (7)–(10) also
deduce the relation amonge† and{Xi,i+1}:

Xi,i+1e
† = e†Xi+1,i+2 (i = 1, . . . , N − 2) (22)

XN−1,N (e
†)2 = (e†)2X12. (23)

These equations show thate† also displaces all the subscripts of the braid-exclusion operators
by 1.

Before constructing raising and lowering operators, we introduce an operator

a
†
i = Xi,i+1Xi+1,i+2 . . . XN−1,Ne

† (i = 1, . . . , N) (24)

as an intermediate. In the case ofi = N this equation reads asa†N = e†. We call a†i the
constituent operator. The constituent operators and the pseudomomenta satisfy the relations:

Dja
†
i − a†i Dj+1 = 0 (16 j 6 i − 1) (25)

Dia
†
i − a†i D1 = a†i (26)

[Dj, a
†
i ] = 0 (i + 16 j 6 N) (27)

which are derived from (12)–(14), (20) and (21). The constituent operators and the braid-
exclusion operators satisfy the relations:

Xi,i+1a
†
i+1 = a†i (28)

Xi,i+1a
†
j =

{
a
†
j Xi+1,i+2 (j > i + 2)

a
†
j Xi,i+1 (j 6 i − 1)

(29)

a
†
i a
†
j = a†j a†i+1X12 (j > i + 1) (30)

which are derived from (16), (17), (22) and (23). Number-like operatorsa
†
i ai andaia

†
i are

expressed in terms of the pseudomomenta as follows

a
†
i ai =

N∏
m=i+1

[(Di −Dm)
2− β2] (16 i 6 N − 1) (31)

aia
†
i =

N∏
m=i+1

[(D1−Dm + 1)2− β2] (16 i 6 N − 1) (32)

a
†
NaN = aNa†N = 1 (33)

which are derived from (12)–(15) and (19)–(21).
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The raising operator is defined as a simple power of a constituent operator:

b
†
i = (a†i )i (i = 1, . . . , N) (34)

and the correspondinglowering operatoris its Hermitian conjugate. The raising operators
and the pseudomomenta satisfies the commutation relations:

[Di, b
†
j ] = θ(j − i)b†j (35)

as is derived from (25)–(27). That is,b†j raises by 1 the eigenvalues of pseudomomenta with
subscripti for i 6 j and is qualified to be called a raising operator. The raising operators
are boson-like since they commute with each other:

[b†i , b
†
j ] = 0 (36)

which are derived from (28)–(30).
Number-like operators are expressed in terms of the pseudomomenta as:

b
†
i bi =

i∏
l=1

N∏
m=i+1

[(Dl −Dm)
2− β2] (16 i 6 N − 1) (37)

bib
†
i =

i∏
l=1

N∏
m=i+1

[(Dl −Dm + 1)2− β2] (16 i 6 N − 1) (38)

b
†
NbN = bNb†N = 1 (39)

which are derived from (25)–(27) and (31)–(33). Further, (28)–(30) yields the following
relations:

Xi,i+1b
†
j = b†jXi,i+1 (i 6= j) (40)

b
†
i Xi,i+1b

†
i = [(Di+1−Di + 1)2− β2]Xi,i+1b

†
i−1b

†
i+1. (41)

We now construct the Fock space of the Sutherland model by using the set of operators
{Di, bj ,Xkl}. Concretely, we produce all the eigenstates of{Di}, starting from a state and
multiplying operators{bj ,Xkl} to it. These states are also eigenstates of the Hamiltonian
because of the commutability ofH and {Di}. An eigenstate with different energy levels
is produced by multiplying the raising or lowering operators, and a degenerate state is
produced by multiplying the braid-exclusion operators.

We label an eigenstate of{Di} by their eigenvalues{ki} as

Di |k1, k2, . . . , kN 〉 = ki |k1, k2, . . . , kN 〉 (i = 1, . . . , N). (42)

We start the construction with a state which has the eigenvalueski = αi (i = 1, . . . , N −1)
and is annihilated by lowering operators as

bi |α1, α2, . . . , αN 〉 = 0 (i = 1, . . . , N − 1). (43)

The case ofi = N is excluded in this equation, sincebN(= eN) is exceptionally unitary
and does not annihilate any state. Equation (43) reduces to

Xi,i+1|α1, α2, . . . , αN 〉 = 0 (i = 1, . . . , N − 1) (44)

due to the definitions ofai andbi . We begin the construction of the Fock space with a state
satisfying conditionα1 > α2 > · · · > αN . Then (44) reduces to

Ki,i+1|α1, . . . , αN 〉 = sgn(β)|α1, . . . , αN 〉 (45)

by using definition (11) ofXi,i+1 and the algebra, (7)–(9). Hence the state|α1, . . . , αN 〉 is
a symmetric (antisymmetric) function forβ > 0 (β < 0).
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To examine possible values of{αi}, we operate anotherXi,i+1 to (44). Then we see
that {αi} are related to each other since (44) and (15) yield the relation(αi − αi+1)

2 = β2.
In reality there stands a stronger condition:

αi − αi+1 = |β| (i = 1, . . . , N − 1) (46)

which is obtained by a calculation with (7)–(9). This condition is rewritten as

αi = α0+ N + 1− 2i

2
|β| (i = 1, . . . , N) (47)

with undetermined constantα0 (− 1
2 < α0 <

1
2). This kind of undetermined constant always

appears in quantum mechanics onS1 [23]. Hereafter we choose it asα0 = 0 so that the
total momentumP of this state vanishes. We write the state withα0 = 0 in (43) simply as
|0〉:

|0〉 ≡
∣∣∣∣N − 1

2
|β|, N − 3

2
|β|, . . . ,−N − 1

2
|β|
〉
. (48)

We will see that this state is the true ground state in the Fock space which we are going to
construct.

We have a series of excited states when we operate raising operators to the ground state
|0〉. By introducing a new notation, we write them as follows

|n1, n2, . . . , nN 〉〉 ≡ (b†1)n1−n2(b
†
2)
n2−n3 . . . (b

†
N)

nN |0〉. (49)

Here we must impose the constraintni > ni+1 (i = 1, . . . , N − 1) so that the power of
b
†
i is positive; b†i (i 6= N ) generally has no inverse operator sinceb†i bi has eigenvalue 0

as seen in (33). In contrast the powernN of the last operatorb†N is unrestricted because
of its unitarity (39). The negative power ofb†N is read as the positive power ofbN , i.e.
(b
†
N)

n = (bN)−n. The constraint is concisely written as

n1 > n2 > · · · > nN. (50)

The states defined by (49) are eigenstates of the pseudomomenta as is shown by (35):

Di |n1, n2, . . . , nN 〉〉 =
(
ni + N + 1− 2i

2
|β|
)
|n1, n2, . . . , nN 〉〉. (51)

Hence|n1, n2, . . . , nN 〉〉 is identified as

|n1, n2, . . . , nN 〉〉 = |k1, k2, . . . , kN 〉 (52)

with eigenvalueki = ni + (N + 1− 2i)|β|/2 for Di (i = 1, . . . , N). The norm of this state
is calculated as

〈〈n1, . . . , nN |n1, . . . , nN 〉〉 =
N−1∏
i=1

i∏
l=1

N∏
m=i+1

ni−ni+1∏
r=1

[((m− l)β + r + ni+1− nm)2− β2] (53)

by means of relations (35)–(39).
Next we operate a braid-exclusion operatorXi,i+1 to the eigenstate (42) of{Di}. Then

relations (12)–(15) yields the following equation:

Xi,i+1| . . . , ki, ki+1, . . .〉 =
√
(ki+1− ki)2− β2| . . . , ki+1, ki, . . .〉. (54)

Hence, if |ki+1 − ki | 6= |β|, Xi,i+1 produces a new state in which eigenvalueski and ki+1

are exchanged. Equation (54) for states corresponds to relation (12) and (13) for operators,
which means the exchange ofDi andDi+1. Operating{Xi,i+1} to |k1, k2, . . . , kN 〉 in (52)
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finite times, we reach any possible order of{ki}. Redefiningki as the eigenvalue ofDi ,
possible eigenvalues of{Di} are written as

ki = nσ(i) + N + 1− 2σ(i)

2
|β| (i = 1, . . . , N) (55)

whereσ is a permutation among 1, 2, . . . , N which satisfiesnσ(i) 6= nσ(j) for |σ(i)−σ(j)| =
1. For |β| = 1, constraint (50) is equivalent to the Pauli principle:|ki − kj | 6= 1. Hence for
anyβ constraint (50) describes a generalized Pauli principle:

|ki − kj | > |β|. (56)

When a set of pseudomomentum eigenvalues{ki} is known, (6) gives the energy
eigenvalue as

E =
N∑
i=1

k2
i . (57)

This equation shows that the set ofki = αi (i = 1, 2, . . . , N) gives the lowest energy and
(48) is the true ground state. In an arbitrary set{ki}, the energyE is invariant under an
exchange ofki ’s. The exchanged set gives a state with the same energy as the original if
|ki − kj | 6= |β| (i 6= j ). Thus the braid-exclusion operators{Xi,i+1} create degenerate states
by repeating (54). The ground state is not degenerate, since the operation of{Xi,i+1} to the
ground state (ki = αi) gives 0 due to (54).

The degeneracy of an energy eigenvalue is given by counting the number of possible
combinations of the corresponding set{ki}. We take out all the quantum numbers
m1, m2, . . . , mL which are included in{nj } and are different from each other. Then we
defineli for eachmi so thatli is the number of elements equal tomi in {nj }. In terms of
{lj } the degeneracy is given by

N !

l1!l2! . . . lL!
. (58)

Thus we have reproduced all the eigenenergies and their degeneracy for the Sutherland
model.

In summary, we have found a novel algebraic formalism for the eigenvalue problem
of the Sutherland model. All the energy eigenstates are obtained as eigenstates of
pseudomomenta{Di}. The formalism is based on raising operators{b†i } and braid-exclusion
operators{Xi,i+1} as well as pseudomomenta{Di}. While b†i creates another state with
different energy,Xi,i+1 creates another degenerate state. The calculation of the correlation
function in the present formalism is a future problem.

We would like to thank Yoshio Ohnuki and Shinsaku Kitakado for useful discussions. This
work is partially supported by the Grant-in-Aid for Scientific Research from the Ministry
of Education, Science and Culture, Japan.
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